This is a collaborative space. In order to contribute, send an email to maximilien.chaumon@icm-institute.org
On any page, type the letter L on your keyboard to add a "Label" to the page, which will make search easier.

Skip to end of metadata
Go to start of metadata

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 4 Next »

Most difficult is the labeling by other people that models are empty-headed bodies. Boyd Holbrook

Prerequisite

Data with headshape points (3 fiducials, and ~100 head points, optionally 4 HPI coils) should have been digitized before MEG data acquisition.

Individual subject MRI should have been acquired.

Goal of this tutorial

Merge (i.e. realign) the sensor locations of the MEG recordings with the MRI of the individual subject, create a head model and a grid (aka leadfield matrix) for source analysis.

Step-by-step guide

Preliminary code
rootdir = '/path/to/data';
sujdir = fullfile(rootdir,'/subjectXX');
mkdir(rootdir);mkdir(sujdir);mkdir(fullfile(rootdir,'figures','headmodel');
addpath('/path/to/export_fig'); % https://github.com/altmany/export_fig

1. Load the MRI and "reslice" it

In this step, we simply put the right side of the MRI up. Skipping this step will result in mixed up slices and/or upside down image.

ft_volumereslice
mrif = '/path/and/filename/to/T1_mri.mgz';
% the file format could be one of many supported by fieldtrip. Native DICOM format works but is a bit slow to load.

% read in the mri
mri=ft_read_mri(mrif);

% flip image so it looks upright
cfg             = [];
cfg.method      = 'flip';
mri_aligned     = ft_volumereslice(cfg,mri);

using freesurfer's orig file

Note that if you have used freesurfer previously to segment your MRI, you can load the original mri stored in your freesurfer subjects' directory under SubjectName/orig/001.mgz

2. Align the MRI with the fiducial points

This step is just a rough alignment of the MRI fiducial points. The next step will use head shape points to refine this alignment. If no head shape points have been digitized, it is important to point precisely to the fiducial points here.

ft_volumerealign
% realign with fiducials
cfg             = [];
cfg.method      = 'interactive';
cfg.coordsys    = 'neuromag';
mri_aligned     = ft_volumerealign(cfg, mri_aligned);

3. Refine alignment with head shape points

ft_volumerealign
% headshape should be stored along with the MEG data
headshapef = '/path/to/MEGdata.fif';

cfg             = [];
cfg.method      = 'headshape';
headshape       = ft_read_headshape(headshapef);
headshape       = ft_convert_units(headshape, 'mm');
cfg.headshape.headshape = headshape;
cfg.coordsys    = 'neuromag';
cfg.headshape.interactive = 'no';
mri_aligned     = ft_volumerealign(cfg, mri_aligned);

This step can also be done interactively to further refine

4. Create a head model (3D surfaces for brain, skull and scalp)

Segment and extract brain, skull and scalp surfaces.

ft_prepare_headmodel
cfg             = [];
cfg.output      = {'brain','skull','scalp'};
mri_seg         = ft_volumesegment(cfg, mri_aligned);

cfg             = [];
cfg.method      = 'singleshell';
cfg.tissue      = {'brain','skull','scalp'};
headmodel       = ft_prepare_headmodel(cfg,mri_seg);

Surfaces

Note that only the scalp surface is necessary to create the head model for source localization. It looks much nicer on the upcoming figures with 3 layers, though.

 

5. Load and align a template grid to the head model

 

ft_prepare_sourcemodel
cfg = [];
cfg.grid.warpmni   = 'yes';
cfg.grid.template  = template_grid;
cfg.grid.nonlinear = 'yes';
cfg.grid.unit      = 'mm';
cfg.mri            = mri_aligned;
grid               = ft_prepare_sourcemodel(cfg);

% save the results
save(fullfile(sujdir,'source_head_model.mat'), 'mri', 'mri_aligned','mri_seg','headmodel','grid','headshape');

 

6. Plot the results and check

 

Check results
% make a figure with enough space for 3 panels horizontally
p = get(0,'defaultfigureposition'); p(3) = p(3) * 3;
figure('name',suj,'numbertitle','off','position',p);

% first panel with brain and algned grid
subplot(131);
hm = headmodel;hm.bnd = hm.bnd(1);% use only the first layer (brain)
ft_plot_vol(hm,'vertexcolor','none','facecolor','skin','edgecolor','none','facealpha',.5);
ft_plot_mesh(grid.pos(grid.inside,:));%
lighting gouraud
material shiny
camlight
view(90,0)
rotate3d on
drawnow
title('brain and source model')

% second panel with head shape points, HPI coils, scalp, skull, and brain.
subplot(132);
ft_plot_vol(headmodel,'vertexcolor','none','facecolor','skin','edgecolor','none','facealpha',.5);
ft_plot_headshape(headshape);
hpi = find(cellfun(@(x)~isempty(x),regexp(headshape.label,'hpi_.*')));
hold on
scatter3(headshape.pos(hpi,1),headshape.pos(hpi,2),headshape.pos(hpi,3),200,'b','.');
text(headshape.pos(hpi,1),headshape.pos(hpi,2),headshape.pos(hpi,3), headshape.label(hpi), 'HorizontalAlignment', 'center', 'VerticalAlignment', 'middle', 'Interpreter', 'tex');
lighting gouraud
material shiny
camlight
view(-150,0)
rotate3d on
drawnow
title('head model and head shape')

% third panel with head and MEG sensors
subplot(133);cla
ft_plot_vol(headmodel,'vertexcolor','none','facecolor','skin','edgecolor','none','facealpha',.5);
lighting gouraud
material shiny
camlight
view(-180,0)
drawnow
for i_run = 1:numel(allruns)
    h = ft_read_header(allruns(i_run).name);
    h.grad = ft_convert_units(h.grad, 'mm');

    ft_plot_sens(h.grad);
end
rotate3d on
drawnow
title('head model and sensors')
drawnow

% save as image and as .fig
export_fig(hfig,fullfile(rootdir,'figures','headmodel',['headmodel_' suj '.png']),'-nocrop','-r300'); % https://github.com/altmany/export_fig
saveas(hfig,fullfile(rootdir,'figures','headmodel',['headmodel_' suj '.fig']))

 

 

  • No labels

0 Comments

You are not logged in. Any changes you make will be marked as anonymous. You may want to Log In if you already have an account.