This is a collaborative space. In order to contribute, send an email to maximilien.chaumon@icm-institute.org
On any page, type the letter L on your keyboard to add a "Label" to the page, which will make search easier.

app-notch-filter

app under development Private app on bl

This App aims at apply to MEG/EEG signals notch filtering to filter power line noise and its harmonics for instance. To do so, the MNE Python functions raw.notch_filter is used.

  • Unlike app-temporal-filtering and app-resampling, this app can be run only on continuous data.

  • This App can be applied on EEG data when it is stored in a .fif.

 

GitHub repository

https://github.com/AuroreBussalb/app-notch-filtering

 

Brainlife datatype used:

 

Inputs of the App

Files

Format

Datatype

Description

Optional

Files

Format

Datatype

Description

Optional

MEG signals

.fif

meg/fif

The data must be continuous. Temporal filtering and resampling can have been applied beforehand.

No

 

Outputs of the App:

Files

Format

Datatype

Description

Files

Format

Datatype

Description

MEG signals

.fif

meg/fif

Data after filtering

Report

.html

html

Visualization in time and frequency domains

Besides, in the output directory, there are the optional files that can be used in a next App (see How to run Apps one after another).

 

Parameters of the App

The parameters of the App correspond to the parameters passed to the Python functions used in the App. Their default values proposed in Brainlife or in config.json.example correspond to the default values of MNE Python 0.23.

 

Next improvements

  • See if possible to apply a notch filter on epoch data?

  • Allow user to change the plot parameters for the plots in the HTML report?