Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

Status
colourYellow
titleapp under development
Status
colourPurple
titlePrivate app on bl

This App aims at apply to MEG signals temporal filtering (lowpass, highpass, or bandpass), and optionally a notch filter and a resampling. To do so, the MNE Python functions raw.filter, raw.notch_filter, and raw.resample are used.

This App is supposed to be applied on MEG signals preprocessed beforehand with MaxFilter

GitHub repository

...

https://github.com/AuroreBussalb/app-temporal-filtering

Brainlife datatype used:

...

  1. Function raw.filter()

  • l_freq

    • NUMBER

      • optional

      • default:

      None
      • 0.5

  • h_freq

    • NUMBER

      • optional

      • default:

      None
      • 150

Some parameters are in the “Advanced” section because it’s best to keep their default values:

  • picks

    • ENUMSTRING

      • either meg, eeg, [“meg”, “eeg”], mag, grad, a list of channels names, or None (i.e. all channels except for the bad ones)

      • default: None

  • filter_length

    • STRING

      • default: auto

  • l_trans_bandwidth

    • NUMBERSTRING

      • default: auto

      • Read only

  • h_trans_bandwidth

    • NUMBERSTRING

      • default: auto

      • Read only

  • n_jobs

    • NUMBER

      • default: 1

  • method

    • STRINGENUM

      • either fir or iir

      • default: fir

  • iir_params

    to be determined

    • STRING

      • optional

      • default: None

  • phase

    • ENUM

      • either zero or zero-double

      • default: zero

  • fir_window

    • ENUM

      • either hamming, hann, or blackman

      • default: hamming

  • fir_design

    • ENUM

      • either firwin or firwin2

      • default: firwin

  • skip_by_annotation

    • ENUM

      • either ["edge", "bad_acq_skip"], ["edge"], ["bad_acq_skip"], or []

  • pad

    • ENUM

      • either reflect_limited or any value of numpy.pad()

      • default: reflect_limited

2. Function raw.filter_notch()

  • param_apply_notch

    • BOOLEAN

      • default: True

  • param_notch_freqs_start

    • NUMBER

      • default: 50 (in Europe power line artifact is at 50Hz, in the US it’s at 60Hz)

  • param_notch_freqs_stop

    • NUMBER

      • default: 251 (in Europe, if MEG signals were recorded in the US, change it to 241)

  • param_notch_freqs_step

    • NUMBER

      • default: 50 (in Europe, if MEG signals were recorded in the US, change it to 60)

Some parameters are in the “Advanced” section because it’s best to keep their default values:

  • picks

    • ENUM

      STRING either meg, eeg, [“meg”, “eeg”], mag, grad, or None (i.e. all channels except for the bad ones)

      • default: None

  • filter_length

    • STRING

      • default: auto

  • notch_widths

    • NUMBER

      • optional

      • default: None

  • trans_bandwidth

    • NUMBER

      • default: 1

  • n_jobs

    • NUMBER

      • default: 1

  • method

    • STRINGENUM

      • either fir or iir

      • default: fir

  • iir_params

    to be determined

    • STRING

      • optional

      • default: None

  • mt_bandwidth

    • NUMBER

      • default: None

  • p_value

    • NUMBER

      • default: 0.05

  • phase

    • ENUM

      • either zero or zero-double

      • default: zero

  • fir_window

    • ENUM

      • either hamming, hann, or blackman

      • default: hamming

  • fir_design

    • ENUM

      • either firwin or firwin2

      • default: firwin

  • pad

    • ENUM

      • either reflect_limited or any value of numpy.pad()

      • default: reflect_limited

3. Function raw.resample()

  • apply_resample

    • BOOLEAN

      • Default: False

  • sfreq

    • NUMBER

Some parameters are in the “Advanced” section because it’s best to keep their default values:

  • npad

    • NUMBERSTRING

      • Read only

      • default: auto

  • window

    • ENUM

      • see choices in scipy.signal.get_window

      • default: boxcar

  • stim_picks

    • STRING

      • optional

      • default: None

  • n_jobs

    • NUMBER

      • default: 1

  • events

    • NUMBER

      • optional

      • default: None

  • pad

    • ENUM

      • either reflect_limited or any value of numpy.pad()

      • default: reflect_limited

  • See if it’s possible in BL to put a default STRING value in a NUMBER parameter

  • iir_params must be a dictionary, to see how to write it for BL

  • see how to write an array of floats in BL the list of parameters will be updated when the App will be registered on BL

Note

The parameters' list along with their default values correspond to the 0.22.0 version of MNE.

...