Status | ||||
---|---|---|---|---|
|
Status | ||||
---|---|---|---|---|
|
This App aims at apply to MEG signals temporal filtering (lowpass, highpass, or bandpass), and optionally a notch filter and a resampling. To do so, the MNE Python functions raw.filter, raw.notch_filter, and raw.resample are used.
This App is supposed to be applied on MEG signals preprocessed beforehand with MaxFilter
GitHub repository
...
https://github.com/AuroreBussalb/app-temporal-filtering
Brainlife datatype used:
For input: neuro/meg/fif
For outputs: neuro/meg/fif and report/html
...
Function
raw.filter()
l_freq
NUMBER
optional
default:
0.5
h_freq
NUMBER
optional
default:
150
Some parameters are in the “Advanced” section because it’s best to keep their default values:
picks
ENUM
STRING
either meg, eeg, [“meg”, “eeg”], mag, grad, a list of channels names, or
None
(i.e. all channels except for the bad ones)default:
None
filter_length
STRING
default: auto
l_trans_bandwidth
NUMBER
STRING
default: auto
Read only
h_trans_bandwidth
NUMBER
STRING
default: auto
Read only
n_jobs
NUMBER
default: 1
method
STRING
ENUM
either fir or iir
default: fir
iir_params
to be determinedSTRING
optional
default:
None
phase
ENUM
either zero or zero-double
default: zero
fir_window
ENUM
either hamming, hann, or blackman
default: hamming
fir_design
ENUM
either firwin or firwin2
default: firwin
skip_by_annotation
ENUM
either ["edge", "bad_acq_skip"], ["edge"], ["bad_acq_skip"], or []
pad
ENUM
either reflect_limited or any value of
numpy.pad()
default: reflect_limited
2. Function raw.filter_notch()
param_apply_notch
BOOLEAN
default: True
param_notch_freqs_start
NUMBER
default: 50 (in Europe power line artifact is at 50Hz, in the US it’s at 60Hz)
param_notch_freqs_stop
NUMBER
default: 251 (in Europe, if MEG signals were recorded in the US, change it to 241)
param_notch_freqs_step
NUMBER
default: 50 (in Europe, if MEG signals were recorded in the US, change it to 60)
Some parameters are in the “Advanced” section because it’s best to keep their default values:
picks
ENUM
STRING
either meg, eeg, [“meg”, “eeg”], mag, grad, orNone
(i.e. all channels except for the bad ones)default:
None
filter_length
STRING
default: auto
notch_widths
NUMBER
optional
default:
None
trans_bandwidth
NUMBER
default: 1
n_jobs
NUMBER
default: 1
method
STRING
ENUM
either fir or iir
default: fir
iir_params
to be determinedSTRING
optional
default:
None
mt_bandwidth
NUMBER
default:
None
p_value
NUMBER
default: 0.05
phase
ENUM
either zero or zero-double
default: zero
fir_window
ENUM
either hamming, hann, or blackman
default: hamming
fir_design
ENUM
either firwin or firwin2
default: firwin
pad
ENUM
either reflect_limited or any value of
numpy.pad()
default: reflect_limited
3. Function raw.resample()
apply_resample
BOOLEAN
Default: False
sfreq
NUMBER
Some parameters are in the “Advanced” section because it’s best to keep their default values:
npad
NUMBER
STRING
Read only
default: auto
window
ENUM
see choices in
scipy.signal.get_window
default: boxcar
stim_picks
STRING
optional
default:
None
n_jobs
NUMBER
default: 1
events
NUMBER
optional
default:
None
pad
ENUM
either reflect_limited or any value of
numpy.pad()
default: reflect_limited
See if it’s possible in BL to put a default
STRING
value in aNUMBER
parameteriir_params must be a dictionary, to see how to write it for BL
see how to write an array of floats in BL the list of parameters will be updated when the App will be registered on BL
Note |
---|
The parameters' list along with their default values correspond to the |
...