Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

  • Function main()

  1. Parse the config.json

  2. Raise an exception if both l_freq and h_freq are None

  3. Apply temporal_filtering()

  4. Apply _compute_snr()

  5. Apply _generate_report()

...

For app-temporal-filtering, the user will be able to choose the following parameters (a default parameter will be proposed). Three different MNE Python functions are used in this App:

  1. Function raw.filter()

  • l_freq

    • NUMBER

    • default: None

  • h_freq

    • NUMBER

    • default: None

Some parameters are in the “Advanced” section because it’s best to keep their default values:

  • picks

    • ENUM

    • either meg, eeg, [“meg”, “eeg”], mag, grad, or None (i.e. all channels except for the bad ones)

    • default: None

  • filter_length

    • STRING

      • default: auto

  • l_trans_bandwidth

    • NUMBER

      • default: auto

  • h_trans_bandwidth

    • NUMBER

      • default: auto

  • n_jobs

    • NUMBER

      • default: 1

  • method

    • STRING

      • either fir or iir

      • default: fir

  • iir_params

    • to be determined

  • phase

    • ENUM

      • either zero or zero-double

      • default: zero

  • fir_window

    • ENUM

      • either hamming, hann, or blackman

      • default: hamming

  • fir_design

    • ENUM

      • either firwin or firwin2

      • default: firwin

  • skip_by_annotation

    • ENUM

      • either ["edge", "bad_acq_skip"], ["edge"], ["bad_acq_skip"], or []

  • pad

    • ENUM

      • either reflect_limited or any value of numpy.pad()

      • default: reflect_limited

2. Function raw.filter_notch()

  • param_notch_freqs_start

    • NUMBER

    • default: 50 (in Europe power line artifact is at 50Hz, in the US it’s at 60Hz)

    • param_notch_freqs_stop

      • NUMBER

      • default: 251 (in Europe, if MEG signals were recorded in the US, change it to 251)

  • param_notch_freqs_step

    • NUMBER

      • default: 50 (in Europe, if MEG signals were recorded in the US, change it to 50)60)

Some parameters are in the “Advanced” section because it’s best to keep their default values:

  • picks

    • ENUM

      • either meg, eeg, [“meg”, “eeg”], mag, grad, or None (i.e. all channels except for the bad ones)

      • default: None

  • filter_length

    • STRING

      • default: auto

  • notch_widths

    • NUMBER

      • default: None

  • trans_bandwidth

    • NUMBER

      • default: 1

  • n_jobs

    • NUMBER

      • default: 1

  • method

    • STRING

      • either fir or iir

      • default: fir

  • iir_params

    • to be determined

  • mt_bandwidth

    • NUMBER

      • default: None

  • p_value

    • NUMBER

      • default: 0.05

  • phase

    • ENUM

      • either zero or zero-double

      • default: zero

  • fir_window

    • ENUM

      • either hamming, hann, or blackman

      • default: hamming

  • fir_design

    • ENUM

      • either firwin or firwin2

      • default: firwin

  • pad

    • ENUM

    • either reflect_limited or any value of numpy.pad()

    • default: reflect_limited

3. Function raw.resample()

  • sfreq

    • NUMBER

  • npad

    • NUMBER

      • default: auto

  • window

    • ENUM

      • see choices in scipy.signal.get_window

      • default: boxcar

  • stim_picks

    • STRING

      • default: None

  • n_jobs

    • NUMBER

      • default: 1

  • events

    • NUMBER

      • default: None

  • pad

    • ENUM

      • either reflect_limited or any value of numpy.pad()

      • default: reflect_limited

  • See if it’s possible in BL to put a default STRING value in a NUMBER parameter

  • iir_params must be a dictionary, to see how to write it for BL

  • see how to write an array of floats in BL

  • the list of parameters will be updated when the App will be registered on BL

  • Docstings and README.md don doesn't contain the list of parameters yet.

...