%% Compute DICS filters for the concatenated data
cfg = [];
cfg.channel = channelsofinterest ;
cfg.method = 'dics';
cfg.frequency = freqofinterest ;
cfg.grid = grid;
cfg.headmodel = vol;
cfg.senstype = 'MEG';
cfg.dics.keepfilter = 'yes'; % We wish to use the calculated filter later on
cfg.dics.projectnoise = 'yes';
cfg.dics.lambda = beamformer_lambda_normalization;
source_all = ft_sourceanalysis(cfg, powcsd_all);
%% Apply computed filters to each active and reference windows
cfg = [];
cfg.channel = channelsofinterest ;
cfg.method = 'dics';
cfg.frequency = freqofinterest ;
cfg.grid = grid;
cfg.grid.filter = source_all.avg.filter;
cfg.dics.projectnoise = 'yes';
cfg.headmodel = vol;
cfg.dics.lambda = beamformer_lambda_normalization ;
cfg.senstype ='MEG' ;
%% Source analysis active
source_active = ft_sourceanalysis(cfg, powcsd_active);
%% Source analysis reference
source_reference = ft_sourceanalysis(cfg, powcsd_ref);
%% Compute differences (power) between active and reference
source_diff = source_active ;
source_diff.avg.pow = (source_active.avg.pow - source_reference.avg.pow) ./ (source_active.avg.pow + source_reference.avg.pow);
%% Display the results
visuBF( source_diff, 'title' )
%% MRI reslicing
mri_resliced = ft_volumereslice([], mri_aligned);
%% Display results superimposed on MRI
cfg = [];
cfg.parameter = 'avg.pow';
source_active_int = ft_sourceinterpolate(cfg, source_active, mri_resliced);
source_reference_int = ft_sourceinterpolate(cfg, source_reference, mri_resliced);
source_diff_int = source_active_int;
source_diff_int.pow = (source_active_int.pow - source_reference_int.pow) ./ (source_active_int.pow + source_reference_int.pow);
%% Change source locations for display in MNI
sources_exp.pos = template.sourcemodel.pos;
sources_exp.dim = template.sourcemodel.dim;
%
sources_bsl.pos = template.sourcemodel.pos;
sources_bsl.dim = template.sourcemodel.dim;
%% Save results
save([conf.output '_exp.mat'], 'sources_exp')
save([conf.output '_bsl.mat'], 'sources_bsl')
DO THE STATISTICS NOW
list_sujets_HV = {
{{'gamma01_s01'},{}, {'140702'}, {'S01'}, {'sGAMMA_VS_01-0003-00001-000176-01.img'}}
{{'gamma03_s03'},{'140710'}, {'140703'}, {'S03'}, {'sGAMMA_T_02_GI-0003-00001-000176-01.img'}}
{{'gamma09_s09'},{'141020'}, {'141107'}, {'S09'}, {'sGAMMA_BD_S09-0003-00001-000176-01.img'}}
{{'gamma10_s10'},{'141112'}, {'141105'}, {'S10'}, {'sGAMMA_AH_S10-0003-00001-000176-01.img'}}
{{'gamma13_s13'},{'150106'}, {'141209'}, {'S13'}, {'sGAMMA_NJ_S13-0003-00001-000176-01.img'}}
{{'gamma14_s14'},{'150106'}, {'150113'}, {'S14'}, {'sGAMMA_MI_S14-0003-00001-000176-01.img'}}
{{'gamma15_s15'},{'150120'}, {'150108'}, {'S15'}, {'sGAMMA_GC_S15-0003-00001-000176-01.img'}}
{{'gamma19_s19'},{'150922'}, {'150219'}, {'S19'}, {'sGAMMA_CV_S19-0003-00001-000176-01.img'}}
{{'gamma24_s24'},{'150421'}, {'150410'}, {'S24'}, {'sGAMMA_S24_KL-0003-00001-000176-01.img'}}
{{'gamma25_s25'},{'150403'}, {'150413'}, {'S25'}, {'sGAMMA_S25_LP-0003-00001-000176-01.img'}}
{{'gamma28_s28'},{'150519'}, {'150512'}, {'S28'}, {'sGAMMA_S28_GA-0003-00001-000176-01.img'}}
{{'gamma29_s29'},{'150527'}, {'150604'}, {'S29'}, {'sGAMMA_S29_AC-0003-00001-000176-01.img'}}
{{'gamma30_s30'},{'150610'}, {'150528'}, {'S30'}, {'sGAMMA_S20_LM-0003-00001-000176-01.img'}}
{{'gamma32_s32'},{'150626'}, {'150710'}, {'S32'}, {'sGAMMA_S32_GJ-0003-00001-000176-01.img'}}
{{'gamma34_s34'},{'150706'}, {'150715'}, {'S34'}, {'sGAMMA_S34_BF-0003-00001-000176-01.img'}}
{{'gamma35_s35'},{'150709'}, {'150716'}, {'S35'}, {'sGAMMA_S35_BA-0005-00001-000176-01.img'}}
{{'gamma37_s37'},{'150720'}, {'150728'}, {'S37'}, {'sGAMMA_S37_TE-0003-00001-000176-01.img'}}
{{'gamma39_s39'},{'151013'}, {'150929'}, {'S39'}, {'sGAMMA_S39_LP-0003-00001-000176-01.img'}}
{{'gamma41_s41'},{'151012'}, {'151021'}, {'S41'}, {'sGAMMA_S41_DT-0005-00001-000176-01.img'}}
{{'gamma42_s42'},{'151014'}, {'151027'}, {'S42'}, {'sGAMMA_S42_PS-0003-00001-000176-01.img'}}
} ;
%% List des patients -> MEG ID - SHAM tACS - REAL tACS - MRI ID - T1 Name
list_sujets_P = {
{{'gamma04_s04'},{'140722'}, {'151106'}, {'S04'}, {'sGAMMA_WC_P02-0004-00001-000176-01.img'}}
{{'gamma05_s05'},{}, {'141103'}, {'S05'}, {'sGAMMA_OC_S05-0003-00001-000176-01.img'}}
{{'gamma06_s06'},{'141014'}, {'141021'}, {'S06'}, {'sGAMMA_JJ_S06-0003-00001-000176-01.img'}}
{{'gamma07_s07'},{'141016'}, {'141104'}, {'S07'}, {'sGAMMA_CV_S07-0003-00001-000176-01.img'}}
{{'gamma08_s08'},{'141121'}, {'141107'}, {'S08'}, {'sGAMMA_MS_S08-0003-00001-000176-01.img'}}
{{'gamma11_s11'},{'141216'}, {'141125'}, {'S11'}, {'sGAMMA_S11_WP-0003-00001-000176-01.img'}}
{{'gamma12_s12'},{'141218'}, {'150116'}, {'S12'}, {'sGAMMA_CC_S12-0004-00001-000176-01.img'}}
{{'gamma16_s16'},{'150209'}, {'150216'}, {'S16'}, {'sGAMMA_S16-0003-00001-000176-01.img'}}
{{'gamma17_s17'},{'150311'}, {'150218'}, {'S17'}, {'sGAMMA_S17_MM-0003-00001-000176-01.img'}}
{{'gamma18_s18'},{'150217'}, {'150210'}, {'S18'}, {'sGAMMA_S18-0003-00001-000176-01.img'}}
{{'gamma20_s20'},{'150313'}, {'150306'}, {'S20'}, {'sGAMMA_SR_S20-0003-00001-000176-01.img'}}
{{'gamma22_s22'},{'150410'}, {'150326'}, {'S22'}, {'sGAMMA_S22_PS-0003-00001-000176-01.img'}}
{{'gamma26_s26'},{'150430'}, {'150423'}, {'S26'}, {'sGAMMA_S26_SD-0003-00001-000176-01.img'}}
{{'gamma27_s27'},{'150506'}, {'150513'}, {'S27'}, {'sGAMMA_S27_KP-0005-00001-000176-01.img'}}
{{'gamma31_s31'},{'150618'}, {'150703'}, {'S31'}, {'sGAMMA_S31_MA-0003-00001-000176-01.img'}}
{{'gamma33_s33'},{'150623'}, {'150601'}, {'S33'}, {'sGAMMA_S32_GJ-0003-00001-000176-01.img'}}
{{'gamma43_s43'},{'151019'}, {'151026'}, {'S43'}, {'sGAMMA_S43_GA-0003-00001-000176-01.img'}}
} ;
%% number of subjects
number_of_subjects_hv = size(list_sujets_HV, 1) ;
number_of_subjects_p = size(list_sujets_P, 1) ;
%% number of sessions
number_of_sessions = 2 ;
%% Construire la grille du beamformer en d?formant le MNI sur le sujet
templatedir = 'fieldtrip-20160105/external/spm8/templates';
template = ft_read_mri(fullfile(templatedir, 'T1.nii'));
list_labels = {'PREMOV', 'POSTMOV_S', 'POSTMOV_L'} ;
list_markers = {'FIRST_DEV_OK', 'FIRST_NODEV_OK', 'LAST_DEV_OK', 'MID_DEV_OK'} ;
list_sensors = {'MAG', 'GRAD'} ;
list_frequencies = {'THETA', 'ALPHA', 'BETA', 'GAMMA'} ;
number_of_labels = lenght(list_labels) ;
number_of_markers = lenght(list_markers) ;
number_of_sensors = lenght(list_sensors) ;
number_of_frequencies = lenght(list_frequencies) ;
for i_label = 1:number_of_labels
for i_mk = 1:number_of_mk
for i_sen = 1:number_of_sen
for i_freq = 1:number_of_freq
sources_pre_hv = {} ;
sources_pre_p = {} ;
sources_post_hv = {} ;
sources_post_p = {} ;
index_exams = 1 ;
markers = list_markers{i_mk} ; %% 'FIRST_DEV_OK' ;
label = list_labels{i_label} ; %% 'PREMOV' ;
sensors = list_sensors{i_sen} ; %% 'MAG' ;
freq = list_frequencies{i_freq} ; %%'GAMMA' ;
conf = [] ;
conf.markers = markers ;
conf.title_figure = [label '_' conf.markers '_PRE_' sensors '_' freq '_MNI'] ;
conf.template = template ;
nb_hv = 0 ;
nb_p = 0 ;
%% Main Analysis
for i=1:number_of_subjects_hv
cd(list_sujets_HV{i}{1}{:})
list_sujets_HV{i}{1}{:}
for exam=1
%% enter exam subdirectory
if ~isempty([list_sujets_HV{i}{1+exam}{:}])
cd(list_sujets_HV{i}{1+exam}{:})
load([conf.title_figure '_diff.mat']) ;
sources_post_hv{index_exams} = source_diff ;
nb_hv = nb_hv + 1 ;
index_exams = index_exams + 1 ;
cd ..
end
end %% for exam
cd ..
end %% for subject
index_exams = 1 ;
%% Main Analysis
for i=1:number_of_subjects_p
cd(list_sujets_P{i}{1}{:})
list_sujets_P{i}{1}{:}
for exam=1
%% enter exam subdirectory
if ~isempty([list_sujets_P{i}{1+exam}{:}])
cd(list_sujets_P{i}{1+exam}{:})
load([conf.title_figure '_diff.mat']) ;
sources_post_p{index_exams} = source_diff ;
nb_p = nb_p + 1 ;
index_exams = index_exams + 1 ;
cd ..
end
end %% for exam
cd ..
end %% for subject
conf = [] ;
mean_hv = zeros(size(sources_post_hv{1}.avg.pow)) ;
for i=1:nb_hv
conf.title_figure='test';
conf.template = template ;
mean_hv = mean_hv + sources_post_hv{i}.avg.pow ;
end ;
mean_sources_hv = sources_post_hv{i} ;
mean_sources_hv.avg.pow = mean_hv / nb_hv ;
visuBF_MNI( conf, mean_sources_hv )
print -djpeg -r300 ['VS_' conf.title_figure '.jpeg']
conf = [] ;
mean_p = zeros(size(sources_post_p{1}.avg.pow)) ;
for i=1:nb_p
conf.title_figure='test';
conf.template = template ;
mean_p = mean_p + sources_post_p{i}.avg.pow ;
end ;
mean_sources_p = sources_post_p{i} ;
mean_sources_p.avg.pow = mean_p / nb_p ;
visuBF_MNI( conf, mean_sources_p )
print -djpeg -r300 ['P_' conf.title_figure '.jpeg']
cfg = [];
cfg.dim = sources_post_hv{1}.dim;
cfg.method = 'montecarlo';
cfg.parameter = 'pow';
cfg.correctm = 'max';
cfg.numrandomization = 2000;
cfg.alpha = 0.05; % note that this only implies single-sided testing
cfg.tail = 0;
cfg.statistic = 'ft_statfun_indepsamplesT';
%% cfg.uvar = 1; % row of design matrix that contains unit variable (in this case: trials)
cfg.ivar = 2; % row of design matrix that contains independent variable (the conditions)
cfg.design(1,:) = [ones(1,nb_hv) ones(1,nb_p)] ;
cfg.design(2,:) = [ones(1,nb_hv) ones(1,nb_p)*2] ;
stat_hv = ft_sourcestatistics(cfg, sources_post_hv{:}, sources_post_p{:}) ;
conf = [] ;
conf.template = template ;
visuBF_MNI_STAT(conf, stat_hv) ;
print -djpeg -r300 ['STAT_' conf.title_figure '.jpeg']
%% Display the results
visuBF( source_diff_int, 'title' )
0 Comments