- Created by Former user , last modified on Sept 25, 2017
You are viewing an old version of this page. View the current version.
Compare with Current View Page History
« Previous Version 8 Next »
In this tutorial you will find a description of all the steps necessary to obtain sources localisation of continuous (non averaged) data using a beamformer approach in FieldTrip for a group of subjects using the MNI template.
Prerequisites
- Read the previous tutorials (MEG EEG pre-processing, MEG sensors realignment, filter, baseline correction)
- Pre process the T1 MRI data or choose a template
- Download the latest version of FieldTrip - Install it in your software folder - Take a look at the FieldTrip tutorials!
Input data
MEG signals (MEG)
FieldTrip can import the fif files coming from our MEG system and those pre processed with our in-house tools. If you acquired simultaneous MEG+EEG data, FieldTrip will import both of them.
MRI
If you have the individual anatomy of each of your subjects (T1 MRI), you should process it with FieldTrip as described below.
If you don't have the individual anatomy, then you have to choose a template in FieldTrip.
Needed software
For MEG fif files pre processed outside FieldTrip: You will need two in-house scripts to read the marker files we add to the MEG fif files (put them in your matlab path):
A short script to pre process the MRI in FieldTrip: pre_process_mri_for_ft.m
A simple script to visualize beamformer results: visuBF.m
D.I.C.S. analysis with FieldTrip
Overview of the process:
Suggested data organisation
The mat files generated by FieldTrip can be stored together with the pre-processed data. You may want to create a specific sub folder "FT" to store them in each subject.
Read data
The data should be pre processed (i.e. artefact free) at this point and the FieldTrip folder in your matlab path.
FieldTrip initialisation.
ft_defaults ; %% Load fieldtrip configuration
MRI processing and grid normalisation to the MNI space
This step should be done only one time. The results (aligned and segmented MRI, head model and grid) will be loaded when needed.
mri=ft_read_mri(dicom_file_name); %% Construire la grille du beamformer en d?formant le MNI sur le sujet templatedir = 'fieldtrip-20160105/template/sourcemodel'; template = load(fullfile(templatedir, 'standard_sourcemodel3d8mm')); %% Realign the MRI to the MEG coordinate cfg=[]; cfg.method = 'interactive' ; cfg.coordsys = 'neuromag' ; mri_aligned = ft_volumerealign(cfg,mri) ; save('mri_aligned.mat', 'mri_aligned'); %% Segmentation cfg = []; cfg.output = 'brain'; segmentedmri = ft_volumesegment(cfg, mri_aligned); save('segmentedmri.mat', 'segmentedmri') ; % construct volume conductor model (i.e. head model) for each subject cfg = []; cfg.method = 'singleshell'; vol = ft_prepare_headmodel(cfg, seg); vol = ft_convert_units(vol, 'cm'); save('vol.mat', 'vol') ; % create the subject specific grid, using the template grid that has just been created cfg = []; cfg.grid.warpmni = 'yes'; cfg.grid.template = template.grid; cfg.grid.nonlinear = 'yes'; % use non-linear normalization cfg.mri = mri_aligned ; warped_grid = ft_prepare_sourcemodel(cfg); save('warped_grid.m', 'warped_grid') % make a figure of the single subject headmodel, and grid positions figure; ft_plot_vol(vol, 'edgecolor', 'none'); alpha 0.5; ft_plot_mesh(grid.pos(grid.inside,:));
General configuration
Here we load all the necessary stuff and we set the main parameters of the analysis:
- time windows for active state and baseline
- frequency of interest
- beamformer configuration
- MEG channels to be used in the analysis
Data preparation
Different sets of trials are prepared for the coming analysis
overall_time_window = [-2 2] ; %% if you modify this modify the trials def above ! Is this used below ??? %% Define time window for active state and baseline active_time_window = [0.2 0.6] ; reference_time_window = [-1.4 -1.0] ; %% Basic configuration of the beamformer beamformer_lambda_normalization = '10%' ; lead_field_depth_normalization = 'column' ; %% Frequency of interest and associated width (we will examine here the 16 Hz to 28 Hz band) freqofinterest = 22 ; freqhalfwin = 6 ; %% Select the channel of interest channelsofinterest = {'MEG*2', 'MEG*3'}; %% Gradiometers on an Elekta system %% channelsofinterest = {'MEG*1'} ; %% Magnetometer on an Elekta system % Define the list of subjects (local structure with for each selected subject, meg label, date of first meg session, date of second meg session, mri label, t1 name) list_sujets = { {{'gamma03_s03'},{'140703'}, {'140710'}, {'S03'}, {'sGAMMA_T_02_GI-0003-00001-000176-01.img'}} {{'gamma07_s07'},{'141016'}, {'141104'}, {'S07'}, {'sGAMMA_CV_S07-0003-00001-000176-01.img'}} {{'gamma08_s08'},{'141107'}, {'141121'}, {'S08'}, {'sGAMMA_MS_S08-0003-00001-000176-01.img'}} {{'gamma10_s10'},{'141105'}, {'141112'}, {'S10'}, {'sGAMMA_AH_S10-0003-00001-000176-01.img'}} {{'gamma18_s18'},{'150210'}, {'150217'}, {'S18'}, {'sGAMMA_S18-0003-00001-000176-01.img'}} {{'gamma19_s19'},{'150219'}, {'150922'}, {'S19'}, {'sGAMMA_CV_S19-0003-00001-000176-01.img'}} {{'gamma20_s20'},{'150306'}, {'150313'}, {'S20'}, {'sGAMMA_SR_S20-0003-00001-000176-01.img'}} {{'gamma22_s22'},{'150410'}, {'150326'}, {'S22'}, {'sGAMMA_S22_PS-0003-00001-000176-01.img'}} {{'gamma24_s24'},{'150410'}, {'150421'}, {'S24'}, {'sGAMMA_S24_KL-0003-00001-000176-01.img'}} {{'gamma25_s25'},{'150403'}, {'150413'}, {'S25'}, {'sGAMMA_S25_LP-0003-00001-000176-01.img'}} {{'gamma26_s26'},{'150423'}, {'150430'}, {'S26'}, {'sGAMMA_S26_SD-0003-00001-000176-01.img'}} {{'gamma27_s27'},{'150506'}, {'150513'}, {'S27'}, {'sGAMMA_S27_KP-0005-00001-000176-01.img'}} {{'gamma29_s29'},{'150527'}, {'150604'}, {'S29'}, {'sGAMMA_S29_AC-0003-00001-000176-01.img'}} {{'gamma31_s31'},{'150618'}, {'150703'}, {'S31'}, {'sGAMMA_S31_MA-0003-00001-000176-01.img'}} {{'gamma39_s39'},{'150929'}, {'151013'}, {'S39'}, {'sGAMMA_S39_LP-0003-00001-000176-01.img'}} } ; %% number of subjects number_of_subjects = size(list_sujets, 1) ; %% Frequencies of interest (here only one, we can define several if needed) fois={{22,6, 'BETA_MNI'}} ; number_of_fois = length(fois) ; %% Charger la grille du beamformer en d?formant le MNI sur le sujet templatedir = 'fieldtrip-20160105/template/sourcemodel'; template = load(fullfile(templatedir, 'standard_sourcemodel3d8mm'));
Forward operator
We compute the leans field based on the warped MNI grid.
D.I.C.S. Analysis
The spatial filters are computed here. We then contrast the two conditions before saving the results. One very important step necessary to allow an easy visualisation of the results is to change the localisation of the grid points back to the original templates ones.
%% Load the MRI data for visualisation purpose load('mri_aligned.mat') ; %% MRI data needed for vizualisation load('segmentedmri.mat') ; index = 1 ; conf = [] ; %% marker of interest markers = 'Move_OK' ; %% output label conf.label = 'WIKI_' ; %% Main Analysis for i=1:number_of_subjects %% Enter subject dir cd(list_sujets{i}{1}{:}) %% Load the head model created during the MRI pre processing load vol ; %% load head model located in the subject directory and obtained from the T1 MRI of the subject %% Load the warped MNI grid load warped_grid ; for exam=1:2 %% Is the subject/session really here? if ~isempty([list_sujets{i}{1+exam}{:}]) %% enter exam subdirectory cd(list_sujets{i}{1+exam}{:}) %% Datasets to be scanned for the marker of interest datasets = {'B_cardiocor_blinkcor_run01_pre_tsss.fif' 'B_cardiocor_blinkcor_run02_pre_tsss.fif' 'B_cardiocor_blinkcor_run03_pre_tsss.fif'} ; %% Read two runs, define trials around LEFT_MVT_CLEAN marker (-2s to 2s around the marker), read also BIO005 which is an EMG. [ trials ] = trial_definition_ft( datasets, markers, 2.0, 2.0, 'BIO005' ) ; % Select time window of interest cfg = []; cfg.toilim = active_time_window ; data_timewindow_active = ft_redefinetrial(cfg,trials); % Select time window of control cfg = []; cfg.toilim = reference_time_window ; data_timewindow_ref = ft_redefinetrial(cfg,trials); % Concatenate for common spatial filter computation data_all = ft_appenddata([], data_timewindow_active, data_timewindow_ref); % Trials with full window cfg = []; cfg.toilim = overall_time_window ; full_data_all = ft_redefinetrial(cfg,trials); % Create leadfield grid cfg = []; cfg.grid = warped_grid ; cfg.vol = hdm ; cfg.channel = channelsofinterest ; cfg.grad = powcsd_active.grad; cfg.vol = vol ; cfg.dics.reducerank = 2; % default for MEG is 2, for EEG is 3 cfg.normalize = lead_field_depth_normalization ; %% Depth normalization [grid] = ft_prepare_leadfield(cfg); for freq_index=1:number_of_fois foi = fois{freq_index}{1} ; wof = fois{freq_index}{2} ; %% Compute DICS filters for the concatenated data cfg = []; cfg.channel = channelsofinterest ; cfg.method = 'dics'; cfg.frequency = freqofinterest ; cfg.grid = grid; cfg.headmodel = vol; cfg.senstype = 'MEG'; cfg.dics.keepfilter = 'yes'; % We wish to use the calculated filter later on cfg.dics.projectnoise = 'yes'; cfg.dics.lambda = beamformer_lambda_normalization; source_all = ft_sourceanalysis(cfg, powcsd_all); %% Apply computed filters to each active and reference windows cfg = []; cfg.channel = channelsofinterest ; cfg.method = 'dics'; cfg.frequency = freqofinterest ; cfg.grid = grid; cfg.grid.filter = source_all.avg.filter; cfg.dics.projectnoise = 'yes'; cfg.headmodel = vol; cfg.dics.lambda = beamformer_lambda_normalization ; cfg.senstype ='MEG' ; %% Source analysis active source_active = ft_sourceanalysis(cfg, powcsd_active); %% Source analysis reference source_reference = ft_sourceanalysis(cfg, powcsd_ref); %% Compute differences (power) between active and reference source_diff = source_active ; source_diff.avg.pow = (source_active.avg.pow - source_reference.avg.pow) ./ (source_active.avg.pow + source_reference.avg.pow); conf.output = [conf.label '_' conf.markers '_PRE_GRAD_' fois{freq_index}{3}] ; conf.coi = {'MEG*2', 'MEG*3'} ; [ sources sources_diff ] = AnalyseMNI( conf ) ; %% %% %% MVT_OK MAG conf.output = [conf.label '_' conf.markers '_PRE_MAG_' fois{freq_index}{3}] ; conf.coi = {'MEG*1'} ; [sources sources_diff ] = AnalyseMNI( conf ) ; end cd .. end end %% for exam cd .. fclose('all') ; end %% for subject %% Compute DICS filters for the concatenated data cfg = []; cfg.channel = channelsofinterest ; cfg.method = 'dics'; cfg.frequency = freqofinterest ; cfg.grid = grid; cfg.headmodel = vol; cfg.senstype = 'MEG'; cfg.dics.keepfilter = 'yes'; % We wish to use the calculated filter later on cfg.dics.projectnoise = 'yes'; cfg.dics.lambda = beamformer_lambda_normalization; source_all = ft_sourceanalysis(cfg, powcsd_all); %% Apply computed filters to each active and reference windows cfg = []; cfg.channel = channelsofinterest ; cfg.method = 'dics'; cfg.frequency = freqofinterest ; cfg.grid = grid; cfg.grid.filter = source_all.avg.filter; cfg.dics.projectnoise = 'yes'; cfg.headmodel = vol; cfg.dics.lambda = beamformer_lambda_normalization ; cfg.senstype ='MEG' ; %% Source analysis active source_active = ft_sourceanalysis(cfg, powcsd_active); %% Source analysis reference source_reference = ft_sourceanalysis(cfg, powcsd_ref); %% Compute differences (power) between active and reference source_diff = source_active ; source_diff.avg.pow = (source_active.avg.pow - source_reference.avg.pow) ./ (source_active.avg.pow + source_reference.avg.pow); %% Display the results visuBF( source_diff, 'title' ) %% MRI reslicing mri_resliced = ft_volumereslice([], mri_aligned); %% Display results superimposed on MRI cfg = []; cfg.parameter = 'avg.pow'; source_active_int = ft_sourceinterpolate(cfg, source_active, mri_resliced); source_reference_int = ft_sourceinterpolate(cfg, source_reference, mri_resliced); source_diff_int = source_active_int; source_diff_int.pow = (source_active_int.pow - source_reference_int.pow) ./ (source_active_int.pow + source_reference_int.pow); %% Change grid locations for display in MNI sources_exp.pos = template.sourcemodel.pos; sources_exp.dim = template.sourcemodel.dim; % sources_bsl.pos = template.sourcemodel.pos; sources_bsl.dim = template.sourcemodel.dim; %% Save results save([conf.output '_exp.mat'], 'sources_exp') save([conf.output '_bsl.mat'], 'sources_bsl')
Basic statistical analysis
DO THE STATISTICS NOW list_sujets_HV = { {{'gamma01_s01'},{}, {'140702'}, {'S01'}, {'sGAMMA_VS_01-0003-00001-000176-01.img'}} {{'gamma03_s03'},{'140710'}, {'140703'}, {'S03'}, {'sGAMMA_T_02_GI-0003-00001-000176-01.img'}} {{'gamma09_s09'},{'141020'}, {'141107'}, {'S09'}, {'sGAMMA_BD_S09-0003-00001-000176-01.img'}} {{'gamma10_s10'},{'141112'}, {'141105'}, {'S10'}, {'sGAMMA_AH_S10-0003-00001-000176-01.img'}} {{'gamma13_s13'},{'150106'}, {'141209'}, {'S13'}, {'sGAMMA_NJ_S13-0003-00001-000176-01.img'}} {{'gamma14_s14'},{'150106'}, {'150113'}, {'S14'}, {'sGAMMA_MI_S14-0003-00001-000176-01.img'}} {{'gamma15_s15'},{'150120'}, {'150108'}, {'S15'}, {'sGAMMA_GC_S15-0003-00001-000176-01.img'}} {{'gamma19_s19'},{'150922'}, {'150219'}, {'S19'}, {'sGAMMA_CV_S19-0003-00001-000176-01.img'}} {{'gamma24_s24'},{'150421'}, {'150410'}, {'S24'}, {'sGAMMA_S24_KL-0003-00001-000176-01.img'}} {{'gamma25_s25'},{'150403'}, {'150413'}, {'S25'}, {'sGAMMA_S25_LP-0003-00001-000176-01.img'}} {{'gamma28_s28'},{'150519'}, {'150512'}, {'S28'}, {'sGAMMA_S28_GA-0003-00001-000176-01.img'}} {{'gamma29_s29'},{'150527'}, {'150604'}, {'S29'}, {'sGAMMA_S29_AC-0003-00001-000176-01.img'}} {{'gamma30_s30'},{'150610'}, {'150528'}, {'S30'}, {'sGAMMA_S20_LM-0003-00001-000176-01.img'}} {{'gamma32_s32'},{'150626'}, {'150710'}, {'S32'}, {'sGAMMA_S32_GJ-0003-00001-000176-01.img'}} {{'gamma34_s34'},{'150706'}, {'150715'}, {'S34'}, {'sGAMMA_S34_BF-0003-00001-000176-01.img'}} {{'gamma35_s35'},{'150709'}, {'150716'}, {'S35'}, {'sGAMMA_S35_BA-0005-00001-000176-01.img'}} {{'gamma37_s37'},{'150720'}, {'150728'}, {'S37'}, {'sGAMMA_S37_TE-0003-00001-000176-01.img'}} {{'gamma39_s39'},{'151013'}, {'150929'}, {'S39'}, {'sGAMMA_S39_LP-0003-00001-000176-01.img'}} {{'gamma41_s41'},{'151012'}, {'151021'}, {'S41'}, {'sGAMMA_S41_DT-0005-00001-000176-01.img'}} {{'gamma42_s42'},{'151014'}, {'151027'}, {'S42'}, {'sGAMMA_S42_PS-0003-00001-000176-01.img'}} } ; %% List des patients -> MEG ID - SHAM tACS - REAL tACS - MRI ID - T1 Name list_sujets_P = { {{'gamma04_s04'},{'140722'}, {'151106'}, {'S04'}, {'sGAMMA_WC_P02-0004-00001-000176-01.img'}} {{'gamma05_s05'},{}, {'141103'}, {'S05'}, {'sGAMMA_OC_S05-0003-00001-000176-01.img'}} {{'gamma06_s06'},{'141014'}, {'141021'}, {'S06'}, {'sGAMMA_JJ_S06-0003-00001-000176-01.img'}} {{'gamma07_s07'},{'141016'}, {'141104'}, {'S07'}, {'sGAMMA_CV_S07-0003-00001-000176-01.img'}} {{'gamma08_s08'},{'141121'}, {'141107'}, {'S08'}, {'sGAMMA_MS_S08-0003-00001-000176-01.img'}} {{'gamma11_s11'},{'141216'}, {'141125'}, {'S11'}, {'sGAMMA_S11_WP-0003-00001-000176-01.img'}} {{'gamma12_s12'},{'141218'}, {'150116'}, {'S12'}, {'sGAMMA_CC_S12-0004-00001-000176-01.img'}} {{'gamma16_s16'},{'150209'}, {'150216'}, {'S16'}, {'sGAMMA_S16-0003-00001-000176-01.img'}} {{'gamma17_s17'},{'150311'}, {'150218'}, {'S17'}, {'sGAMMA_S17_MM-0003-00001-000176-01.img'}} {{'gamma18_s18'},{'150217'}, {'150210'}, {'S18'}, {'sGAMMA_S18-0003-00001-000176-01.img'}} {{'gamma20_s20'},{'150313'}, {'150306'}, {'S20'}, {'sGAMMA_SR_S20-0003-00001-000176-01.img'}} {{'gamma22_s22'},{'150410'}, {'150326'}, {'S22'}, {'sGAMMA_S22_PS-0003-00001-000176-01.img'}} {{'gamma26_s26'},{'150430'}, {'150423'}, {'S26'}, {'sGAMMA_S26_SD-0003-00001-000176-01.img'}} {{'gamma27_s27'},{'150506'}, {'150513'}, {'S27'}, {'sGAMMA_S27_KP-0005-00001-000176-01.img'}} {{'gamma31_s31'},{'150618'}, {'150703'}, {'S31'}, {'sGAMMA_S31_MA-0003-00001-000176-01.img'}} {{'gamma33_s33'},{'150623'}, {'150601'}, {'S33'}, {'sGAMMA_S32_GJ-0003-00001-000176-01.img'}} {{'gamma43_s43'},{'151019'}, {'151026'}, {'S43'}, {'sGAMMA_S43_GA-0003-00001-000176-01.img'}} } ; %% number of subjects number_of_subjects_hv = size(list_sujets_HV, 1) ; number_of_subjects_p = size(list_sujets_P, 1) ; %% number of sessions number_of_sessions = 2 ; %% Construire la grille du beamformer en d?formant le MNI sur le sujet templatedir = 'fieldtrip-20160105/external/spm8/templates'; template = ft_read_mri(fullfile(templatedir, 'T1.nii')); list_labels = {'PREMOV', 'POSTMOV_S', 'POSTMOV_L'} ; list_markers = {'FIRST_DEV_OK', 'FIRST_NODEV_OK', 'LAST_DEV_OK', 'MID_DEV_OK'} ; list_sensors = {'MAG', 'GRAD'} ; list_frequencies = {'THETA', 'ALPHA', 'BETA', 'GAMMA'} ; number_of_labels = lenght(list_labels) ; number_of_markers = lenght(list_markers) ; number_of_sensors = lenght(list_sensors) ; number_of_frequencies = lenght(list_frequencies) ; for i_label = 1:number_of_labels for i_mk = 1:number_of_mk for i_sen = 1:number_of_sen for i_freq = 1:number_of_freq sources_pre_hv = {} ; sources_pre_p = {} ; sources_post_hv = {} ; sources_post_p = {} ; index_exams = 1 ; markers = list_markers{i_mk} ; %% 'FIRST_DEV_OK' ; label = list_labels{i_label} ; %% 'PREMOV' ; sensors = list_sensors{i_sen} ; %% 'MAG' ; freq = list_frequencies{i_freq} ; %%'GAMMA' ; conf = [] ; conf.markers = markers ; conf.title_figure = [label '_' conf.markers '_PRE_' sensors '_' freq '_MNI'] ; conf.template = template ; nb_hv = 0 ; nb_p = 0 ; %% Main Analysis for i=1:number_of_subjects_hv cd(list_sujets_HV{i}{1}{:}) list_sujets_HV{i}{1}{:} for exam=1 %% enter exam subdirectory if ~isempty([list_sujets_HV{i}{1+exam}{:}]) cd(list_sujets_HV{i}{1+exam}{:}) load([conf.title_figure '_diff.mat']) ; sources_post_hv{index_exams} = source_diff ; nb_hv = nb_hv + 1 ; index_exams = index_exams + 1 ; cd .. end end %% for exam cd .. end %% for subject index_exams = 1 ; %% Main Analysis for i=1:number_of_subjects_p cd(list_sujets_P{i}{1}{:}) list_sujets_P{i}{1}{:} for exam=1 %% enter exam subdirectory if ~isempty([list_sujets_P{i}{1+exam}{:}]) cd(list_sujets_P{i}{1+exam}{:}) load([conf.title_figure '_diff.mat']) ; sources_post_p{index_exams} = source_diff ; nb_p = nb_p + 1 ; index_exams = index_exams + 1 ; cd .. end end %% for exam cd .. end %% for subject conf = [] ; mean_hv = zeros(size(sources_post_hv{1}.avg.pow)) ; for i=1:nb_hv conf.title_figure='test'; conf.template = template ; mean_hv = mean_hv + sources_post_hv{i}.avg.pow ; end ; mean_sources_hv = sources_post_hv{i} ; mean_sources_hv.avg.pow = mean_hv / nb_hv ; visuBF_MNI( conf, mean_sources_hv ) print -djpeg -r300 ['VS_' conf.title_figure '.jpeg'] conf = [] ; mean_p = zeros(size(sources_post_p{1}.avg.pow)) ; for i=1:nb_p conf.title_figure='test'; conf.template = template ; mean_p = mean_p + sources_post_p{i}.avg.pow ; end ; mean_sources_p = sources_post_p{i} ; mean_sources_p.avg.pow = mean_p / nb_p ; visuBF_MNI( conf, mean_sources_p ) print -djpeg -r300 ['P_' conf.title_figure '.jpeg'] cfg = []; cfg.dim = sources_post_hv{1}.dim; cfg.method = 'montecarlo'; cfg.parameter = 'pow'; cfg.correctm = 'max'; cfg.numrandomization = 2000; cfg.alpha = 0.05; % note that this only implies single-sided testing cfg.tail = 0; cfg.statistic = 'ft_statfun_indepsamplesT'; %% cfg.uvar = 1; % row of design matrix that contains unit variable (in this case: trials) cfg.ivar = 2; % row of design matrix that contains independent variable (the conditions) cfg.design(1,:) = [ones(1,nb_hv) ones(1,nb_p)] ; cfg.design(2,:) = [ones(1,nb_hv) ones(1,nb_p)*2] ; stat_hv = ft_sourcestatistics(cfg, sources_post_hv{:}, sources_post_p{:}) ; conf = [] ; conf.template = template ; visuBF_MNI_STAT(conf, stat_hv) ; print -djpeg -r300 ['STAT_' conf.title_figure '.jpeg'] %% Display the results visuBF( source_diff_int, 'title' )
- No labels
Add Comment