Versions Compared
Key
- This line was added.
- This line was removed.
- Formatting was changed.
In this tutorial you will find a description of all the steps necessary to obtain sources localisation of continuous (non averaged) data using a beamformer approach in FieldTrip for a group of subjects using the MNI template.
Prerequisites
- Read the previous tutorials (MEG EEG pre-processing, MEG sensors realignment, filter, baseline correction)
- Pre process the T1 MRI data or choose a template
- Download the latest version of FieldTrip - Install it in your software folder - Take a look at the FieldTrip tutorials!
Input data
MEG signals (MEG)
FieldTrip can import the fif files coming from our MEG system and those pre processed with our in-house tools. If you acquired simultaneous MEG+EEG data, FieldTrip will import both of them.
MRI
If you have the individual anatomy of each of your subjects (T1 MRI), you should process it with FieldTrip as described below.
If you don't have the individual anatomy, then you have to choose a template in FieldTrip.
Needed software
For MEG fif files pre processed outside FieldTrip: You will need two in-house scripts to read the marker files we add to the MEG fif files (put them in your matlab path):
A short script to pre process the MRI in FieldTrip: pre_process_mri_for_ft.m
A simple script to visualize beamformer results: visuBF.m
D.I.C.S. analysis with FieldTrip
Overview of the process:
Suggested data organisation
The mat files generated by FieldTrip can be stored together with the pre-processed data. You may want to create a specific sub folder "FT" to store them in each subject.
Read data
The data should be pre processed (i.e. artefact free) at this point and the FieldTrip folder in your matlab path.MEG data
FieldTrip initialisation.
Code Block | ||||
---|---|---|---|---|
| ||||
ft_defaults ; %% Load fieldtrip configuration |
MRI processing and grid normalisation to the MNI space
This step should be done only one time. The results (aligned and segmented MRI, head model and grid) will be loaded when needed.
Code Block | ||
---|---|---|
| ||
mri=ft_read_mri(dicom_file_name); %% ReadConstruire twola runs,grille definedu trialsbeamformer around LEFT_MVT_CLEAN marker (-2s to 2s around the marker), read also BIO005 which is an EMG. [ trials ] = trial_definition_ft( {'cardiocor_blinkcor_run03_tsss.fif' 'cardiocor_blinkcor_run04_tsss.fif'}, 'LEFT_MVT_CLEAN', 2.0, 2.0, 'BIO005' ) ; |
Image Removed
MRI processin
This step should be done only one time. The results (aligned and segmented MRI, head model and grid) will be loaded when needed.
Code Block | ||
---|---|---|
| ||
mri=ft_read_mri(dicom_file_name); %% Realign the MRI to the MEG coordinate cfg=[]; cfg.method = 'interactive' ; cfg.coordsys = 'neuromag' ; mri_aligned = ft_volumerealign(cfg,mri) ; save('mri_aligned.mat', 'mri_aligned'); %% Segmentation cfgen d?formant le MNI sur le sujet templatedir = 'fieldtrip-20160105/template/sourcemodel'; template = load(fullfile(templatedir, 'standard_sourcemodel3d8mm')); %% Realign the MRI to the MEG coordinate cfg=[]; cfg.method = 'interactive' ; cfg.coordsys = 'neuromag' ; mri_aligned = ft_volumerealign(cfg,mri) ; save('mri_aligned.mat', 'mri_aligned'); %% Segmentation cfg = []; cfg.output = 'brain'; segmentedmri = ft_volumesegment(cfg, mri_aligned); save('segmentedmri.mat', 'segmentedmri') ; % construct volume conductor model (i.e. head model) for each subject cfg = []; cfg.method = 'singleshell'; vol = ft_prepare_headmodel(cfg, seg); vol = ft_convert_units(vol, 'cm'); save('vol.mat', 'vol') ; % create the subject specific grid, using the template grid that has just been created cfg = []; cfg.grid.warpmni = 'yes'; cfg.grid.template = template.grid; cfg.grid.nonlinear = 'yes'; % use non-linear normalization cfg.mri = mri_aligned ; warped_grid = ft_prepare_sourcemodel(cfg); save('warped_grid.m', 'warped_grid') % make a figure of the single subject headmodel, and grid positions figure; ft_plot_vol(vol, 'edgecolor', 'none'); alpha 0.5; ft_plot_mesh(grid.pos(grid.inside,:)); |
Image Added
General configuration
Here we load all the necessary stuff and we set the main parameters of the analysis:
- time windows for active state and baseline
- frequency of interest
- beamformer configuration
- MEG channels to be used in the analysis
Code Block | ||
---|---|---|
| ||
|
Data preparation
Different sets of trials are prepared for the coming analysis
Code Block | ||
---|---|---|
| ||
overall_time_window = [-2 2] ; %% if you modify this modify the trials def above ! Is this used below ???
%% Define time window for active state and baseline
active_time_window = [0.2 0.6] ;
reference_time_window = [-1.4 -1.0] ;
%% Basic configuration of the beamformer
beamformer_lambda_normalization = '10%' ;
lead_field_depth_normalization = 'column' ;
%% Frequency of interest and associated width (we will examine here the 16 Hz to 28 Hz band)
freqofinterest = 22 ;
freqhalfwin = 6 ;
%% Select the channel of interest
channelsofinterest = {'MEG*2', 'MEG*3'}; %% Gradiometers on an Elekta system
%% channelsofinterest = {'MEG*1'} ; %% Magnetometer on an Elekta system
% Select time window of interest
cfg = [];
cfg.toilim = active_time_window ;
data_timewindow_active = ft_redefinetrial(cfg,trials);
% Select time window of control
cfg = [];
cfg.toilim = reference_time_window ;
data_timewindow_ref = ft_redefinetrial(cfg,trials);
% Concatenate for common spatial filter computation
data_all = ft_appenddata([], data_timewindow_active, data_timewindow_ref);
% Trials with full window
cfg = [];
cfg.toilim = overall_time_window ;
full_data_all = ft_redefinetrial(cfg,trials);
% Define the list of subjects (local structure with for each selected subject, meg label, date of first meg session, date of second meg session, mri label, t1 name)
list_sujets = {
{{'gamma03_s03'},{'140703'}, {'140710'}, {'S03'}, {'sGAMMA_T_02_GI-0003-00001-000176-01.img'}}
{{'gamma07_s07'},{'141016'}, {'141104'}, {'S07'}, {'sGAMMA_CV_S07-0003-00001-000176-01.img'}}
{{'gamma08_s08'},{'141107'}, {'141121'}, {'S08'}, {'sGAMMA_MS_S08-0003-00001-000176-01.img'}}
{{'gamma10_s10'},{'141105'}, {'141112'}, {'S10'}, {'sGAMMA_AH_S10-0003-00001-000176-01.img'}}
{{'gamma18_s18'},{'150210'}, {'150217'}, {'S18'}, {'sGAMMA_S18-0003-00001-000176-01.img'}}
{{'gamma19_s19'},{'150219'}, {'150922'}, {'S19'}, {'sGAMMA_CV_S19-0003-00001-000176-01.img'}}
{{'gamma20_s20'},{'150306'}, {'150313'}, {'S20'}, {'sGAMMA_SR_S20-0003-00001-000176-01.img'}}
{{'gamma22_s22'},{'150410'}, {'150326'}, {'S22'}, {'sGAMMA_S22_PS-0003-00001-000176-01.img'}}
{{'gamma24_s24'},{'150410'}, {'150421'}, {'S24'}, {'sGAMMA_S24_KL-0003-00001-000176-01.img'}}
{{'gamma25_s25'},{'150403'}, {'150413'}, {'S25'}, {'sGAMMA_S25_LP-0003-00001-000176-01.img'}}
{{'gamma26_s26'},{'150423'}, {'150430'}, {'S26'}, {'sGAMMA_S26_SD-0003-00001-000176-01.img'}}
{{'gamma27_s27'},{'150506'}, {'150513'}, {'S27'}, {'sGAMMA_S27_KP-0005-00001-000176-01.img'}}
{{'gamma29_s29'},{'150527'}, {'150604'}, {'S29'}, {'sGAMMA_S29_AC-0003-00001-000176-01.img'}}
{{'gamma31_s31'},{'150618'}, {'150703'}, {'S31'}, {'sGAMMA_S31_MA-0003-00001-000176-01.img'}}
{{'gamma39_s39'},{'150929'}, {'151013'}, {'S39'}, {'sGAMMA_S39_LP-0003-00001-000176-01.img'}}
} ;
%% number of subjects
number_of_subjects = size(list_sujets, 1) ;
%% Frequencies of interest (here only one, we can define several if needed)
fois={{22,6, 'BETA_MNI'}} ;
number_of_fois = length(fois) ;
%% Charger la grille du beamformer en d?formant le MNI sur le sujet
templatedir = 'fieldtrip-20160105/template/sourcemodel';
template = load(fullfile(templatedir, 'standard_sourcemodel3d8mm')); |
Forward operator
We compute the leans field based on the warped MNI grid.
Code Block | ||
---|---|---|
| ||
|
D.I.C.S. Analysis
The spatial filters are computed here. We then contrast the two conditions before saving the results. One very important step necessary to allow an easy visualisation of the results is to change the localisation of the grid points back to the original templates ones.
Code Block |
---|
%% Load the head model created during the MRI pre processing load vol ; %% load head model located in the subject directory and obtained from the T1 MRI of the subject %% Load the warped MNI grid load warped_grid ; %% Load the MRI data for visualisation purpose load('mri_aligned.mat') ; %% MRI data needed for vizualisation load('segmentedmri.mat') ; index = 1 ; conf = [] ; conf.markers = 'Move_OK' ; conf.label = 'WIKI_' ; %% Main Analysis for i=1:number_of_subjects %% Enter subject dir cd(list_sujets{i}{1}{:}) %% Load head model and source model load hdm load sourcemodel for exam=1:2 if ~isempty([list_sujets{i}{1+exam}{:}]) %% enter exam subdirectory cd(list_sujets{i}{1+exam}{:}) conf.datasets = {'B_cardiocor_blinkcor_run01_pre_tsss.fif' 'B_cardiocor_blinkcor_run02_pre_tsss.fif' 'B_cardiocor_blinkcor_run03_pre_tsss.fif'} ; conf.tbm = 2 ; conf.tam = 2 ; conf.active = [-0.5 0.5]; conf.baseline = [-1.5 -1.0]; conf.hdm = hdm ; conf.sourcemodel = sourcemodel ; conf.template = template ; = []; cfg.output %% Read and = 'brain'; segmentedmriPrepare Data = ft_volumesegment(cfg, mri_aligned); save('segmentedmri.mat', 'segmentedmri') ; % construct[ volumeprepared_data conductor] model= (i.e. head model) for each subject cfg = []; cfg.method = 'singleshell'; vol = ft_prepare_headmodel(cfg, seg); vol = ft_convert_units(vol, 'cm'); save('vol.mat', 'vol') ; % create the subject specific grid, using the template grid that has just been created cfg = []; cfg.grid.warpmni = 'yes'; cfg.grid.template = template_grid; cfg.grid.nonlinear = 'yes'; % use non-linear normalization cfg.mriReadDataPrepareTrials_resample_AnalyseMNI( conf ) ; conf.data_timewindow_active = prepared_data.data_timewindow_active ; conf.data_timewindow_ref = prepared_data.data_timewindow_ref ; conf.data_all = prepared_data.data_all ; = mri_aligned ; warped_gridfor freq_index=1:number_of_fois = ft_prepare_sourcemodel(cfg); save('warped_grid.m', 'warped_grid') % make a figure of the single subject headmodel, and grid positions figure; ft_plot_vol(vol, 'edgecolor', 'none'); alpha 0.5; ft_plot_mesh(grid.pos(grid.inside,:)); |
Image Removed
General configuration
Here we load all the necessary stuff and we set the main parameters of the analysis:
- time windows for active state and baseline
- frequency of interest
- beamformer configuration
- MEG channels to be used in the analysis
Code Block | ||
---|---|---|
| ||
%% Load the head model created during the MRI pre processing
load vol ; %% load head model located in the subject directory and obtained from the T1 MRI of the subject
%% Load the warped MNI grid
load warped_grid ;
%% Load the MRI data for visualisation purpose
load('mri_aligned.mat') ; %% MRI data needed for vizualisation
load('segmentedmri.mat') ;
overall_time_window = [-2 2] ; %% if you modify this modify the trials def above ! Is this used below ???
%% Define time window for active state and baseline
active_time_window = [0.2 0.6] ;
reference_time_window = [-1.4 -1.0] ;
%% Basic configuration of the beamformer
beamformer_lambda_normalization = '10%' ;
lead_field_depth_normalization = 'column' ;
%% Frequency of interest and associated width (we will examine here the 16 Hz to 28 Hz band)
freqofinterest = 22 ;
freqhalfwin = 6 ;
%% Select the channel of interest
channelsofinterest = {'MEG*2', 'MEG*3'}; %% Gradiometers on an Elekta system
%% channelsofinterest = {'MEG*1'} ; %% Magnetometer on an Elekta system |
Data preparation
Different sets of trials are prepared for the coming analysis
Code Block | ||
---|---|---|
| ||
% Select time window of interest
cfg = [];
cfg.toilim = active_time_window ;
data_timewindow_active = ft_redefinetrial(cfg,trials);
% Select time window of control
cfg = [];
cfg.toilim = reference_time_window ;
data_timewindow_ref = ft_redefinetrial(cfg,trials);
% Concatenate for common spatial filter computation
data_all = ft_appenddata([], data_timewindow_active, data_timewindow_ref);
% Trials with full window
cfg = [];
cfg.toilim = overall_time_window ;
full_data_all = ft_redefinetrial(cfg,trials);
|
Forward operator
We compute the leans field based on the warped MNI grid.
Code Block | ||
---|---|---|
| ||
conf.foi = fois{freq_index}{1} ;
conf.wof = fois{freq_index}{2} ;
conf.output = [conf.label '_' conf.markers '_PRE_GRAD_' fois{freq_index}{3}] ;
conf.coi = {'MEG*2', 'MEG*3'} ;
[ sources sources_diff ] = AnalyseMNI( conf ) ;
%% %% %% MVT_OK MAG
conf.output = [conf.label '_' conf.markers '_PRE_MAG_' fois{freq_index}{3}] ;
conf.coi = {'MEG*1'} ;
[sources sources_diff ] = AnalyseMNI( conf ) ;
end
cd ..
end
end %% for exam
cd ..
fclose('all') ;
end %% for subject
%% Read two runs, define trials around LEFT_MVT_CLEAN marker (-2s to 2s around the marker), read also BIO005 which is an EMG.
[ trials ] = trial_definition_ft( {'cardiocor_blinkcor_run03_tsss.fif' 'cardiocor_blinkcor_run04_tsss.fif'}, 'LEFT_MVT_CLEAN', 2.0, 2.0, 'BIO005' ) ;
% Create leadfield grid
cfg = [];
cfg.grid = warped_grid ;
cfg.vol = hdm ;
cfg.channel = channelsofinterest ;
cfg.grad = powcsd_active.grad;
cfg.vol = vol ;
cfg.dics.reducerank = 2; % default for MEG is 2, for EEG is 3
cfg.normalize = lead_field_depth_normalization ; %% Depth normalization
[grid] = ft_prepare_leadfield(cfg); |
Image Removed
D.I.C.S. Analysis
The spatial filters are computed here. We then contrast the two conditions before saving the results. One very important step necessary to allow an easy visualisation of the results is to change the localisation of the grid points back to the original templates ones.
Code Block |
---|
%% Compute DICS filters for the concatenated data
cfg = [];
cfg.channel = channelsofinterest ;
cfg.method = 'dics';
cfg.frequency = freqofinterest ;
cfg.grid = grid;
cfg.headmodel = vol;
cfg.senstype = 'MEG';
cfg.dics.keepfilter = 'yes'; % We wish to use the calculated filter later on
cfg.dics.projectnoise = 'yes';
cfg.dics.lambda = beamformer_lambda_normalization;
source_all = ft_sourceanalysis(cfg, powcsd_all);
%% Apply computed filters to each active and reference windows
cfg = [];
cfg.channel = channelsofinterest ;
cfg.method = 'dics';
cfg.frequency = freqofinterest ;
cfg.grid = grid;
cfg.grid.filter = source_all.avg.filter;
cfg.dics.projectnoise = 'yes';
cfg.headmodel = vol;
cfg.dics.lambda = beamformer_lambda_normalization ;
cfg.senstype ='MEG' ;
%% Source analysis active
source_active = ft_sourceanalysis(cfg, powcsd_active);
%% Source analysis reference
source_reference = ft_sourceanalysis(cfg, powcsd_ref);
%% Compute differences (power) between active and reference
source_diff = source_active ;
source_diff.avg.pow = (source_active.avg.pow - source_reference.avg.pow) ./ (source_active.avg.pow + source_reference.avg.pow);
%% Display the results
visuBF( source_diff, 'title' )
%% MRI reslicing
mri_resliced = ft_volumereslice([], mri_aligned);
%% Display results superimposed on MRI
cfg = [];
cfg.parameter = 'avg.pow';
source_active_int = ft_sourceinterpolate(cfg, source_active, mri_resliced);
source_reference_int = ft_sourceinterpolate(cfg, source_reference, mri_resliced);
source_diff_int = source_active_int;
source_diff_int.pow = (source_active_int.pow - source_reference_int.pow) ./ (source_active_int.pow + source_reference_int.pow);
%% Change grid locations for display in MNI
sources_exp.pos = template.sourcemodel.pos;
sources_exp.dim = template.sourcemodel.dim;
%
sources_bsl.pos = template.sourcemodel.pos;
sources_bsl.dim = template.sourcemodel.dim;
%% Save results
save([conf.output '_exp.mat'], 'sources_exp')
save([conf.output '_bsl.mat'], 'sources_bsl') |
Image AddedImage Added
Basic statistical analysis
Code Block |
---|
DO THE STATISTICS NOW
list_sujets_HV = {
{{'gamma01_s01'},{}, {'140702'}, {'S01'}, {'sGAMMA_VS_01-0003-00001-000176-01.img'}}
{{'gamma03_s03'},{'140710'}, {'140703'}, {'S03'}, {'sGAMMA_T_02_GI-0003-00001-000176-01.img'}}
{{'gamma09_s09'},{'141020'}, {'141107'}, {'S09'}, {'sGAMMA_BD_S09-0003-00001-000176-01.img'}}
{{'gamma10_s10'},{'141112'}, {'141105'}, {'S10'}, {'sGAMMA_AH_S10-0003-00001-000176-01.img'}}
{{'gamma13_s13'},{'150106'}, {'141209'}, {'S13'}, {'sGAMMA_NJ_S13-0003-00001-000176-01.img'}}
{{'gamma14_s14'},{'150106'}, {'150113'}, {'S14'}, {'sGAMMA_MI_S14-0003-00001-000176-01.img'}}
{{'gamma15_s15'},{'150120'}, {'150108'}, {'S15'}, {'sGAMMA_GC_S15-0003-00001-000176-01.img'}}
{{'gamma19_s19'},{'150922'}, {'150219'}, {'S19'}, {'sGAMMA_CV_S19-0003-00001-000176-01.img'}}
{{'gamma24_s24'},{'150421'}, {'150410'}, {'S24'}, {'sGAMMA_S24_KL-0003-00001-000176-01.img'}}
{{'gamma25_s25'},{'150403'}, {'150413'}, {'S25'}, {'sGAMMA_S25_LP-0003-00001-000176-01.img'}}
{{'gamma28_s28'},{'150519'}, {'150512'}, {'S28'}, {'sGAMMA_S28_GA-0003-00001-000176-01.img'}}
{{'gamma29_s29'},{'150527'}, {'150604'}, {'S29'}, {'sGAMMA_S29_AC-0003-00001-000176-01.img'}}
{{'gamma30_s30'},{'150610'}, {'150528'}, {'S30'}, {'sGAMMA_S20_LM-0003-00001-000176-01.img'}}
{{'gamma32_s32'},{'150626'}, {'150710'}, {'S32'}, {'sGAMMA_S32_GJ-0003-00001-000176-01.img'}}
{{'gamma34_s34'},{'150706'}, {'150715'}, {'S34'}, {'sGAMMA_S34_BF-0003-00001-000176-01.img'}}
{{'gamma35_s35'},{'150709'}, {'150716'}, {'S35'}, {'sGAMMA_S35_BA-0005-00001-000176-01.img'}}
{{'gamma37_s37'},{'150720'}, {'150728'}, {'S37'}, {'sGAMMA_S37_TE-0003-00001-000176-01.img'}}
{{'gamma39_s39'},{'151013'}, {'150929'}, {'S39'}, {'sGAMMA_S39_LP-0003-00001-000176-01.img'}}
{{'gamma41_s41'},{'151012'}, {'151021'}, {'S41'}, {'sGAMMA_S41_DT-0005-00001-000176-01.img'}}
{{'gamma42_s42'},{'151014'}, {'151027'}, {'S42'}, {'sGAMMA_S42_PS-0003-00001-000176-01.img'}}
} ;
%% List des patients -> MEG ID - SHAM tACS - REAL tACS - MRI ID - T1 Name
list_sujets_P = {
{{'gamma04_s04'},{'140722'}, {'151106'}, {'S04'}, {'sGAMMA_WC_P02-0004-00001-000176-01.img'}}
{{'gamma05_s05'},{}, {'141103'}, {'S05'}, {'sGAMMA_OC_S05-0003-00001-000176-01.img'}}
{{'gamma06_s06'},{'141014'}, {'141021'}, {'S06'}, {'sGAMMA_JJ_S06-0003-00001-000176-01.img'}}
{{'gamma07_s07'},{'141016'}, {'141104'}, {'S07'}, {'sGAMMA_CV_S07-0003-00001-000176-01.img'}}
{{'gamma08_s08'},{'141121'}, {'141107'}, {'S08'}, {'sGAMMA_MS_S08-0003-00001-000176-01.img'}}
{{'gamma11_s11'},{'141216'}, {'141125'}, {'S11'}, {'sGAMMA_S11_WP-0003-00001-000176-01.img'}}
{{'gamma12_s12'},{'141218'}, {'150116'}, {'S12'}, {'sGAMMA_CC_S12-0004-00001-000176-01.img'}}
{{'gamma16_s16'},{'150209'}, {'150216'}, {'S16'}, {'sGAMMA_S16-0003-00001-000176-01.img'}}
{{'gamma17_s17'},{'150311'}, {'150218'}, {'S17'}, {'sGAMMA_S17_MM-0003-00001-000176-01.img'}}
{{'gamma18_s18'},{'150217'}, {'150210'}, {'S18'}, {'sGAMMA_S18-0003-00001-000176-01.img'}}
{{'gamma20_s20'},{'150313'}, {'150306'}, {'S20'}, {'sGAMMA_SR_S20-0003-00001-000176-01.img'}}
{{'gamma22_s22'},{'150410'}, {'150326'}, {'S22'}, {'sGAMMA_S22_PS-0003-00001-000176-01.img'}}
{{'gamma26_s26'},{'150430'}, {'150423'}, {'S26'}, {'sGAMMA_S26_SD-0003-00001-000176-01.img'}}
{{'gamma27_s27'},{'150506'}, {'150513'}, {'S27'}, {'sGAMMA_S27_KP-0005-00001-000176-01.img'}}
{{'gamma31_s31'},{'150618'}, {'150703'}, {'S31'}, {'sGAMMA_S31_MA-0003-00001-000176-01.img'}}
{{'gamma33_s33'},{'150623'}, {'150601'}, {'S33'}, {'sGAMMA_S32_GJ-0003-00001-000176-01.img'}}
{{'gamma43_s43'},{'151019'}, {'151026'}, {'S43'}, {'sGAMMA_S43_GA-0003-00001-000176-01.img'}}
} ;
%% number of subjects
number_of_subjects_hv = size(list_sujets_HV, 1) ;
number_of_subjects_p = size(list_sujets_P, 1) ;
%% number of sessions
number_of_sessions = 2 ;
%% Construire la grille du beamformer en d?formant le MNI sur le sujet
templatedir = 'fieldtrip-20160105/external/spm8/templates';
template = ft_read_mri(fullfile(templatedir, 'T1.nii'));
list_labels = {'PREMOV', 'POSTMOV_S', 'POSTMOV_L'} ;
list_markers = {'FIRST_DEV_OK', 'FIRST_NODEV_OK', 'LAST_DEV_OK', 'MID_DEV_OK'} ;
list_sensors = {'MAG', 'GRAD'} ;
list_frequencies = {'THETA', 'ALPHA', 'BETA', 'GAMMA'} ;
number_of_labels = lenght(list_labels) ;
number_of_markers = lenght(list_markers) ;
number_of_sensors = lenght(list_sensors) ;
number_of_frequencies = lenght(list_frequencies) ;
for i_label = 1:number_of_labels
for i_mk = 1:number_of_mk
for i_sen = 1:number_of_sen
for i_freq = 1:number_of_freq
sources_pre_hv = {} ;
sources_pre_p = {} ;
sources_post_hv = {} ;
sources_post_p = {} ;
index_exams = 1 ;
markers = list_markers{i_mk} ; %% 'FIRST_DEV_OK' ;
label = list_labels{i_label} ; %% 'PREMOV' ;
sensors = list_sensors{i_sen} ; %% 'MAG' ;
freq = list_frequencies{i_freq} ; %%'GAMMA' ;
conf = [] ;
conf.markers = markers ;
conf.title_figure = [label '_' conf.markers '_PRE_' sensors '_' freq '_MNI'] ;
conf.template = template ;
nb_hv = 0 ;
nb_p = 0 ;
%% Main Analysis
for i=1:number_of_subjects_hv
cd(list_sujets_HV{i}{1}{:})
list_sujets_HV{i}{1}{:}
for exam=1
%% enter exam subdirectory
if ~isempty([list_sujets_HV{i}{1+exam}{:}])
cd(list_sujets_HV{i}{1+exam}{:})
load([conf.title_figure '_diff.mat']) ;
sources_post_hv{index_exams} = source_diff ;
nb_hv = nb_hv + 1 ;
index_exams = index_exams + 1 ;
cd ..
end
end %% for exam
cd ..
end %% for subject
index_exams = 1 ;
%% Main Analysis
for i=1:number_of_subjects_p
cd(list_sujets_P{i}{1}{:})
list_sujets_P{i}{1}{:}
for exam=1
%% enter exam subdirectory
if ~isempty([list_sujets_P{i}{1+exam}{:}])
cd(list_sujets_P{i}{1+exam}{:})
load([conf.title_figure '_diff.mat']) ;
sources_post_p{index_exams} = source_diff ;
nb_p = nb_p + 1 ;
index_exams = index_exams + 1 ;
cd ..
end
end %% for exam
cd ..
end %% for subject
conf = [] ;
mean_hv = zeros(size(sources_post_hv{1}.avg.pow)) ;
for i=1:nb_hv
conf.title_figure='test';
conf.template = template ;
mean_hv = mean_hv + sources_post_hv{i}.avg.pow ;
end ;
mean_sources_hv = sources_post_hv{i} ;
mean_sources_hv.avg.pow = mean_hv / nb_hv ;
visuBF_MNI( conf, mean_sources_hv )
print -djpeg -r300 ['VS_' conf.title_figure '.jpeg']
conf = [] ;
mean_p = zeros(size(sources_post_p{1}.avg.pow)) ;
for i=1:nb_p
conf.title_figure='test';
conf.template = template ;
mean_p = mean_p + sources_post_p{i}.avg.pow ;
end ;
mean_sources_p = sources_post_p{i} ;
mean_sources_p.avg.pow = mean_p / nb_p ;
visuBF_MNI( conf, mean_sources_p )
print -djpeg -r300 ['P_' conf.title_figure '.jpeg']
cfg = [];
cfg.dim = sources_post_hv{1}.dim;
cfg.method = 'montecarlo';
cfg.parameter = 'pow';
cfg.correctm = 'max';
cfg.numrandomization = 2000;
cfg.alpha = 0.05; % note that this only implies single-sided testing
cfg.tail = 0;
cfg.statistic = 'ft_statfun_indepsamplesT';
%% cfg.uvar = 1; % row of design matrix that contains unit variable (in this case: trials)
cfg.ivar = 2; % row of design matrix that contains independent variable (the conditions)
cfg.design(1,:) = [ones(1,nb_hv) ones(1,nb_p)] ;
cfg.design(2,:) = [ones(1,nb_hv) ones(1,nb_p)*2] ;
stat_hv = ft_sourcestatistics(cfg, sources_post_hv{:}, sources_post_p{:}) ;
conf = [] ;
conf.template = template ;
visuBF_MNI_STAT(conf, stat_hv) ;
print -djpeg -r300 ['STAT_' conf.title_figure '.jpeg']
%% Display the results
visuBF( source_diff_int, 'title' ) |